
Computers & Industrial Engineering 64 (2013) 972–986
Contents lists available at SciVerse ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
Modeling and Pareto optimization of multi-objective order scheduling
problems in production planning q
0360-8352/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cie.2013.01.006

q This manuscript was processed by Area Editor Subhash C. Sarin.
⇑ Corresponding author. Tel.: +86 28 8541 7867; fax: +86 28 8541 5628.

E-mail address: zx.guo@alumni.polyu.edu.hk (Z.X. Guo).
Z.X. Guo a,⇑, W.K. Wong b, Zhi Li b, Peiyu Ren a

a Business School, Sichuan University, Chengdu 610065, PR China
b Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, PR China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 19 February 2012
Received in revised form 2 January 2013
Accepted 11 January 2013
Available online 30 January 2013

Keywords:
Production planning
Multi-site order scheduling
Mathematical model
Pareto optimization
NSGA-II
Simulation model
This paper addresses a multi-objective order scheduling problem in production planning under a compli-
cated production environment with the consideration of multiple plants, multiple production depart-
ments and multiple production processes. A Pareto optimization model, combining a NSGA-II-based
optimization process with an effective production process simulator, is developed to handle this problem.
In the NSGA-II-based optimization process, a novel chromosome representation and modified genetic
operators are presented while a heuristic pruning and final selection decision-making process is devel-
oped to select the final order scheduling solution from a set of Pareto optimal solutions. The production
process simulator is developed to simulate the production process in the complicated production envi-
ronment. Experiments based on industrial data are conducted to validate the proposed optimization
model. Results show that the proposed model can effectively solve the order scheduling problem by
generating Pareto optimal solutions which are superior to industrial solutions.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In manufacturing companies, production planning is at the top
level of production management and is crucial to successful pro-
duction management because its performance greatly affects the
performance of production control and supply chain management.
This paper investigates a decision-making problem in the produc-
tion planning stage, a multi-objective multi-site order scheduling
problem in a medium-term planning horizon, by developing an
effective methodology for the problem.
1.1. Multi-site order scheduling in production planning

Consider the real-world production environment of the manu-
facturing company with multiple plants (sites), multiple produc-
tion departments and multiple production processes. The
manufacturing company receives a large number of production or-
ders from different customers, which need to be assigned to the
company’s self-owned or collaborative plants for production. The
production of a product (or a production order) involves multiple
production processes, including ordinary processes and special
processes. Each plant can produce all ordinary processes. However,
not every plant can produce special processes because some plants
do not have the production department required for the corre-
sponding special processes. As a variety of production orders need
to be assigned to appropriate plants for production, it is probable
that different production processes of an order need to be assigned
to different plants. The manufacturer must determine how to as-
sign each production process of this order to an appropriate plant
(site) and determine the beginning time of each process in a plan-
ning horizon of several months, which is called the multi-site order
scheduling (MSOS) problem. This problem is faced by a large num-
ber of manufacturing companies from labor-intensive industries
such as the apparel industry. The investigation on this problem is
very important because its performance greatly affects the perfor-
mance of downstream production control and the entire supply
chain.

The MSOS problem is a complicated combinatorial optimization
problem with a huge solution space. Take a simple order schedul-
ing problem considering 10 production orders and 3 factories as an
example. There are 310 candidate solutions for this problem even if
each order has only one production process. The real-world prob-
lems have a much greater solution space because they need to han-
dle the production of a large number of production orders (often
more than 100) with multiple production processes in a longer
time period and determine the values of a large number of vari-
ables. There does not exist an effective methodology for this prob-
lem nowadays. The order scheduling process in today’s labor-
intensive manufacturing mainly rests on the experience and sub-
jective assessment of the production planner.

http://dx.doi.org/10.1016/j.cie.2013.01.006
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1.2. Research issues in production planning decision-making

Production planning decision-making involves a wide variety of
research issues, includingmasterproduction schedule(Sahin, Robin-
son, & Gao, 2008; Venkataraman & Nathan, 1994), material require-
ments planning (Dolgui & Prodhon, 2007; Le, Gunn, & Nahavandi,
2004), manufacturing resource planning (MRP II) (Sawyer, 1990;
Wazed,Ahmed,&Nukman,2010),enterpriseresourceplanning(Ehie
&Madsen,2005;Parush,Hod,&Shtub,2007),andaggregateplanning
(Jamalnia & Soukhakian, 2009; Lee, Steinberg, & Khumawala, 1983).
A great number of papers have been published in this area and some
researchers provided comprehensive review papers (Dolgui & Prod-
hon, 2007; Mula, Peidro, Diaz-Madronero, & Vicens, 2010; Wang,
Keshavarzmanesh, Feng, & Buchal, 2009; Wazed et al., 2010).

Some researchers investigated the decision-making problems in
production planning from other perspectives. Li, Man, Tang,
Kwong, and Ip (2000) addressed the production planning and
scheduling problems in a multi-product and multi-process produc-
tion environment with the lot-size consideration. Jozefwska and
Zimniak (2008) presented a decision support system for short-
term production planning and scheduling in production plants
characterized by a single-operation manufacturing process. Some
researchers investigated the multi-site production planning prob-
lem (Guinet, 2001; Leung, Tsang, Ng, & Wu, 2007; Timpe & Kall-
rath, 2000), which consider each site as an independent and
parallel production unit and usually belong to aggregate planning
problems. However, few studies have focused on release and
scheduling of production orders (or processes) among different
sites in production planning stage so far.

Ashby and Uzsoy (1995) presented a set of heuristic rules to
integrate order release, group scheduling and order sequencing
in a single-stage production system. Axsater (2005) addressed
the order release problem in a multi-stage assembly system, which
focused on determining the starting time of different production
operations but did not consider where the process was produced.
Chen and Pundoor (2006) addressed order allocation and schedul-
ing at the supply chain level, which focused on assigning orders to
different production plants and exploring a schedule for processing
the assigned orders in each plant. However, their study has not
considered the effects of different production departments and
their production capacities on scheduling performance. Each pro-
duction department indicates a type of shop floor. The order re-
lease and scheduling problem in the production planning stage,
considering multiple plants and multiple production departments
and multiple production processes, has not been investigated.

This paper will investigate the MSOS problem with the consid-
eration of multiple production plants and multiple types of pro-
duction processes. Due to the complexity of the investigated
problem, the values of objective functions of each candidate order
scheduling solutions cannot be obtained directly by mathematical
formulas, which can only be derived by simulating the production
of all production processes in appropriate plants. Unfortunately, no
simulation model is available so far.

In this paper, the mathematical model of the investigated MSOS
problem in the production planning stage will be established
firstly. Based on the mathematical model, an effective optimization
model is developed to solve the MSOS problem. In the optimization
model, a simulation model, called the production process simula-
tor, is proposed to simulate the production of different production
orders in multiple plants.

1.3. Multi-objective optimization techniques in production decision-
making

In real-world production decision-making, it is usual that multi-
ple production objectives need to be considered and achieved
simultaneously. Some researchers use the weighted sum method
to turn the multi-objective problems to single-objective ones
(Guo, Wong, Leung, Fan, & Chan, 2008a; Ishibuchi & Murata,
1998). However, it is difficult for some problems to determine
the weights of different objectives. It is also impossible to have a
single solution which can simultaneously optimize all objectives
when multiple objectives are conflicting. To handle this problem,
some researchers used the concept of Pareto optimality to provide
more feasible solutions (Pareto optimal solutions) to the produc-
tion decision-maker (Chitra, Rajaram, & Venkatesh, 2011; Ishibash-
i, Aguirre, Tanaka, & Sugimura, 2000; Jozefwska & Zimniak, 2008;
Liu, Yan, & Yu, 2009; Zhang & Gen, 2010).

The GA is the most commonly used meta-heuristic technique for
multi-objective optimization problems (Chang & Chen, 2009; Deb,
Pratap, Agarwal, & Meyarivan, 2002; Guo, Wong, Leung, & Fan,
2009; Guo et al., 2008a, Guo, Wong, Leung, Fan, & Chan, 2008b;
Jones, Mirrazavi, & Tamiz, 2002; Zhang & Gen, 2010). Some
researchers focused on developing multi-objective GAs to seek Par-
eto optimal solutions (Deb et al., 2002; Ishibashi et al., 2000). A sig-
nificant paper for multi-objective GA was published by Deb et al.
(2002), in which a fast elitist non-dominated sorting GA (NSGA-II)
was proposed. Since then, the NSGA-II has attracted more and more
attention, and was used and modified for various optimization
problems. However, the NSGA-II has not been reported to handle
the combinatorial optimization problems in production planning.
The existing NSGA-II cannot be directly used to handle the MSOS
problem because different chromosome representations and genet-
ic operators are required for different optimization problems.

An effective Pareto optimization model, which combines a
NSGA-II-based optimization process and a production process sim-
ulator, is developed to provide Pareto optimal solutions for the
investigated MSOS problem. To construct the NSGA-II-based opti-
mization process, the chromosome representation and genetic
operators are modified to handle the MSOS problem.

The rest of this paper is organized as follows. Section 2 presents
the mathematical model of the investigated MSOS problem. In Sec-
tion 3, a Pareto optimization model is developed to solve the prob-
lem. In Section 4, experimental results to validate the performance
of the proposed model are presented. Finally, this paper is summa-
rized and future research direction is suggested in Section 5.

2. Mathematical model of the order scheduling problem in
production planning

This section presents the mathematical model of the MSOS
problem in the production planning stage.

2.1. Nomenclature

The notations used in developing the mathematical model of the
MSOS problem investigated are classified into 3 categories, includ-
ing production order-related, production process-related and pro-
duction department-related notations, which are listed out below.

Production order-related notations

Gh
 hth production order group

Oi
 ith production order (1 6 i 6m)

m
 the number of production orders (parameter)

Di
 due date of order Oi (parameter)

Fi
 finishing time of order Oi, the time when order Oi is

delivered to central warehouse (intermediate variable)

TDi
 tardiness (tardy days) of order Oi (intermediate

variable)

TPTi
 throughput time of order Oi (intermediate variable)
(continued on next page)
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Production process-related notations

Pij
 production process of type j of order Oi, (1 6 j 6 N). Pij

exists if Oi includes production process of type j,
otherwise Pij does not exist
N
 the total number of the types of production processes in
all plants (parameter)
Aij
 arrival time of process Pij in the production department
processing Pij (intermediate variable)
Bij
 beginning time for performing process Pij (decision
variable)
Cij
 completion time for performing process Pij

(intermediate variable)

Tij
 processing time of process Pij (intermediate variable)

TTSij
 time (days) to transport semi-finished products with

finished process Pij between production departments
(plants) chosen by the developed optimization model
(intermediate variable)
Wij
 workload of Pij (parameter, unit: standard man days)

WTij
 waiting time, time to wait for the arrival of process Pij in

the idle production department (intermediate variable)
Xk
ij;
indicates if process Pij is assigned to production

department Skj, Xk
ij is equal to 1; otherwise it is equal to

0. (decision variable)
Production department-related notations

Skj
 production department of type j in the kth plant

(1 6 k 6 n). Skj exists if the kth plant includes shop
floors of type j, otherwise Skj does not exist. Skj can only
produce Pij
n
 the number of production plants (parameter)

ISkj
 indicate if Skj exists, ISkj = 1; otherwise ISkj = 0

(parameter)

PCkj
 daily production capacity of Skj (parameter, unit:

standard manpower)

SPkj
 set of production processes assigned to Skj for

processing

TITkj
 total idle time of production department Skj

(intermediate variable)

TTk
 time (days) to transport finished products to central

warehouse from the kth plant (parameter)
2.2. Problem description

The MSOS problem considers n production plants located in dif-
ferent locations. These plants involve N production departments
numbered as 1 to N, which perform, respectively, N types of differ-
ent production processes denoted as process type 1 to process type
N. These production departments can be classified into two catego-
ries: ordinary category and special category. Each category in-
volves multiple production departments. Each plant includes all
production departments of ordinary category whereas it is possible
that a plant only partly includes (or even does not include) produc-
tion departments of special category. In other words, different
plants can have different numbers of production departments. In
this research, we use the term ‘‘standard manpower’’ to represent
the standard available manpower in each production department.
The standard manpower of a production department is equal to
the summation of each operator’s average efficiency in the
department.

In today’s labor-intensive industries, a production order usu-
ally has a small product quantity and a tight due date. The man-
ufacturer always receives a number of production orders with
the same or close due dates from a customer (e.g., the retailer)
at a time. We group these orders according to their due dates.
Each group of these orders with the same due date is defined
as an order group. Each order group usually consists of multiple
production orders, each of which consists of a maximum of N
production processes. In each order, the production process with
larger process type number needs to be performed earlier. Each
order involves all production processes performed in the produc-
tion departments of ordinary category whereas it is possible that
the order only partly involves (or even does not involve) pro-
cesses performed in production departments of special category.
Each production process of an order is assigned to only one
plant for processing due to the small product quantity. All fin-
ished products are delivered to a central warehouse for product
delivery and distribution. The transportation time between dif-
ferent production departments in a plant is considered in the
processing time of production processes.
2.3. Assumptions

In this research, the addressed MSOS problem is formulated
based on the following assumptions.

(1) One production department cannot perform more than one
production order at a time.

(2) Once a production process is started, it cannot be
interrupted.

(3) There is no shortage of materials in production.

2.4. Constraints

The real-world manufacturing environment is subject to the fol-
lowing constraints.

(1) Process allocation constraint: If production process Pij exists,
it must and can only be assigned to one production depart-
ment for processing, i.e.,
Xn

k¼1

Xk
ij ¼ 1 ð1Þ
If the first production process Pi1 of order Oi is assigned to

the kth plant, its subsequent processes also need to be
assigned to this plant if the plant includes the correspond-
ing production departments performing these processes,
i.e.,
Xk
ij ¼ 1 ðj > 1Þ if Xk

i1 ¼ 1 and ISkj ¼ 1 ð2Þ
To speed up production and decrease transportation cost,

the production processes of the same process type in each
production order group must be assigned to the same plant
for processing in real-world production, i.e.,
Xk
i0 j ¼ 1 if Xk

ij ¼ 1; Oi 2 Gh and Oi0 2 Gh ð3Þ
(2) Process precedence constraint: For order Oi, the production
process with smaller process type number must be per-
formed earlier, i.e.,
Bij 6 Biðjþ1Þ ð4Þ
(3) Beginning time constraint: Production process Pij cannot be
processed before the process is transported to the assigned
production department, i.e.,
Aij 6 Bij ð5Þ
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where

Aij ¼
Ciðj�1Þ þ TTSiðj�1Þ ðj > 1Þ
0 ðj ¼ 1Þ

�
ð6Þ
If processes Pij and Pi(j+1) are produced in two different plants,
TTSij equals the transportation time between the two plants;
otherwise TTSij is equal to 0.
(4) Processing time constraint: Each existing production process
must be assigned with the processing time. For production
process Pij, there exists
Cij ¼ Bij þ Tij ð7Þ
The processing time Tij of process Pij is equal to this process’s
workload Wij divided by the daily production capacity of the
assigned production department, i.e.,

Tij ¼
Xn

k¼1

Wij � Xk
ij

PCkj
ð8Þ
(5) Finishing time constraint: Finishing time Fi of order Oi is
equal to the completion time CiN of its last production pro-
cess plus the transportation time from the assigned produc-
tion plant to the central warehouse, i.e.,
Fi ¼ CiN þ
Xn

k¼1

Xk
iN � TTk ð9Þ
NSGA-II-based genetic 
optimization process

Production process 
simulator

Performance 
criteria

Candidate 
solution (s)

Fig. 1. Flow chart of proposed Pareto optimization model.
2.5. Objective functions

The investigated MSOS problem aims at minimizing three
important and commonly used production objectives in competi-
tive labor-intensive industries by determining the optimal solu-
tions of beginning time Bij and process allocation Xk

ij of production
process Pij. The first objective of the addressed problem is to mini-
mize the total tardiness of all orders, which is expressed as

Objective 1 : min Z1 Bij;X
k
ij

� �

with

Z1 Bij;X
k
ij

� �
¼
Xm

i¼1

TDi ð10Þ

where TDi = max(0, Fi � Di).
The second objective of the addressed problem is to minimize

the total throughput time of all orders, which is expressed as
follows:

Objective 2 : min Z2 Bij;X
k
ij

� �

with

Z2 Bij;X
k
ij

� �
¼
Xm

i¼1

TPTi ¼
Xm

i¼1

ðCiN � Bi1Þ ð11Þ

The third objective of the addressed problem is to minimize the
total idle time of all production departments, which is expressed as
follows:

Objective 3 : min Z3 Bij;X
k
ij

� �

with

Z3 Bij;X
k
ij

� �
¼
Xn

k¼1

XN

j¼1

TITkj ¼
Xn

k¼1

XN

j¼1

X
8Pij2SPkj

WTij ð12Þ

where WTij equals Bij minus the completion time of preceding pro-
duction process performed in the same production department. The
latter is determined by the proposed production process simulator.
The three objectives described above can be conflicting. For
example, the solution leading to a less total tardiness Z1 can lead
to greater total throughput time Z2 and greater total idle time Z3.

3. Pareto optimization model for multi-objective order
scheduling problems

The process of optimization can be divided into two parts: gen-
erating candidate solutions and evaluating candidate solutions (Fu,
2002). In this paper, a Pareto optimization model is proposed to
implement the optimization process for the MSOS problem inves-
tigated, in which a NSGA-II-based optimization process is devel-
oped to generate candidate solutions of order assignment to
different plants, and a production process simulator is then devel-
oped to determine the beginning time of each production process
and evaluate the performance of all candidate solutions. The flow
chart of the proposed Pareto optimization model is shown in Fig. 1.

3.1. NSGA-II-based optimization process

The NSGA-II (Deb et al., 2002) was modified to handle the MSOS
problem investigated. Fig. 2 shows the processes (steps) involved
in the NSGA-II. To generate Pareto optimal solutions to the MSOS
problem formulated in Section 3, some processes of the NSGA-II
are modified. The modified processes are described in detail below.

3.1.1. Representation
The first step of the NSGA-II is to encode possible order sched-

uling solutions into chromosomes. A chromosome represents a fea-
sible solution. To handle the MSOS problem addressed, a feasible
solution needs to be able to determine the assignment of each pro-
duction process of each order to an appropriate plant. According to
formula (3), the solution can be determined by the assignment of
each order group’s production processes.

In real-world production, the number of plants assigned to pro-
cess a production order should be as few as possible so as to reduce
the transportation time and cost between different plants. Accord-
ing to formula (2) in Section 3, the assignment of production pro-
cess 1 of each order group will determine the assignments of
subsequent processes in this order group. This research constructs
the chromosome by using the assignment of production process 1
of each order group to an appropriate plant. The assignment and
processing sequence of the subsequent production processes of
each order group will be deduced by the process assignment pro-
cedure of the production process simulator described in
Section 3.2.2.

In this research, each chromosome is a sequence of genes whose
length is equal to the number of order groups to be processed. Each
gene identifies an order group and the value of each gene indicates
the plant assigned to produce production process 1 of the corre-
sponding order group. Fig. 3 shows an example of this representa-
tion which considers an order scheduling problem of assigning 10
order groups to 4 plants. Based on this chromosome, only one
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order group (order group 7) is assigned to plant 1 for the produc-
tion of its production process 1 while 4 order groups (order groups
1, 2, 5 and 9) are assigned to plant 3.

3.1.2. Population initialization
The initialization process generates the initial population of the

genetic optimization process in the NSGA-II-based optimization
process, which can be implemented by the following 4 steps:

Step (1) Initialize parameters: index i = 1, population size PS,
population POP = {/} and the number NG of order
groups.

Step (2) Based on the proposed chromosome representation,
randomly generate one chromosome CHR. That is,
for each gene, randomly select a plant number as its
value.

Step (3) Check if the values of genes in CHR contain all plant
numbers. If not, the generated child chromosome is
an invalid solution and go to Step 2; otherwise set
POP = POP [ CHR and go to Step 4.

Step (4) Set i = i + 1. Stop if i > PS, else go to Step 2.

3.1.3. Crossover
To adapt the proposed presentation, a uniform crossover (Gold-

berg, 1989) – based crossover operator was adopted, which is
implemented by using the following steps:

Step (1) Randomize a bit string with the same length as the
chromosomes.

Step (2) Find the gene positions where the value is 1 in the bit
string.
Step (3) Fill in the same gene positions in Child 1, found in
Step 2, by copying the genes from the corresponding
positions of Parent 1. (Now in Child 1, the positions
are filled in wherever the bit string contains ‘‘1’’ and
positions are left blank wherever the bit string con-
tains ‘‘0’’.)

Step (4) Fill in the remaining positions in Child 1 by copying
the genes from the corresponding positions of Parent
2 wherever the bit string contains ‘‘0’’.

Step (5) Check if the generated child chromosome is an invalid
solution. If so, go to Step 1; otherwise output the gen-
erated chromosome.

Step (6) Child 2 is produced using a similar process as above.

Fig. 4 shows an example of the crossover operator described
above, in which two child chromosomes are both valid solutions.

3.1.4. Mutation
A modified mutation operator is proposed based on the uniform

mutation (Goldberg, 1989) usually used for binary and real-coded
representations, which is implemented according to the steps
below:

Step (1) Randomly generate a positive integer i, which is less
than the half of the length of the chromosome.

Step (2) Randomly select i genes as mutation genes in the ori-
ginal chromosome.

Step (3) For each mutation genes selected, randomly change
its value in its value range.

Step (4) Check if the chromosome generated in Step 3 is an
invalid solution. If so, go to Step 2; otherwise, output
the generated chromosome.

An example of the proposed mutation operator is shown in
Fig. 5, in which the 3rd and the 9th genes are selected as mutation
genes.

3.1.5. Performance evaluation and termination criterion
This section describes the process to evaluate the newly gener-

ated chromosomes and the termination criterion of the NSGA-II
process.

(1) Performance evaluation of chromosomes newly generated
For each newly generated chromosome in the initial popula-
tion and offspring generation, it is necessary to evaluate its
performance by calculating the values of objective functions
to be optimized. In this research, these values are equal to
the outputs of the production process simulator.

(2) Termination criterion
The evolutionary process of NSGA-II in this research is con-
trolled by a specified number of generations. If the maxi-
mum number of generations is reached, the genetic
evolution process is terminated.
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3.1.6. Heuristic pruning and final selection decision-making
The heuristic pruning and final selection decision-making is

performed using two processes, including a pruning process and
a final selection process. The pruning process is firstly used to
prune the Pareto optimal set and obtain a set of preferred optimal
solutions (pruned solutions). The final selection process is then
used to pick a final solution for real production from these pruned
solutions instead of the Pareto optimal set.

The non-numerical objective function ranking preference meth-
od, proposed by Taboada and Coit (2008), was adopted to imple-
ment the pruning process, which is described as below:

Step 1. Rank objectives according to the preference and impor-
tance of each objective. The objective with higher priority
and importance has a higher rank.

Step 2. Normalize the values of objective functions based on each
objective.

Step 3. Randomly generate a weight set w = (w1,w2, . . . ,wn) for
objective functions F1,F2, . . . ,Fn based on the following
rules: (a) The objective function with a higher rank has lar-
ger weight and (b) The summation of weights is equal to 1,
i.e., w1 + w2 + � � � + wn = 1.

Step 4. Sum up weighted objectives to form a single function
F 0 ¼

Pn
i¼1wiFi.

Step 5. Find the solution that yields the minimal (optimal) value
for F0 from the Pareto optimal set.

Step 6. Increase the counter corresponding to that solution by a
value of one.

Step 7. Repeat Steps 2–6 until no new preferred solution can be
found for 100 consecutive iterations.

Step 8. Determine the pruned Pareto optimal set, i.e., the solutions
that have non-zero counter values (counter > 0).

The solutions obtained by the above pruning process are then
used as the inputs of the final selection process to obtain the final
preferred solution for real-world production. The final solution is
usually selected based on actual production environment and pro-
duction requirements. That is, the manufacturing company can
adopt different strategies to select the final solution under differ-
ent production environments and requirements.

Assume that the pruning process generated q pruned solutions.
We firstly sort the q pruned solutions according to the value of
objective 1 in an ascending order. The sorted solutions are num-
bered as pruned solutions 1,2, . . . ,q. Let zki denotes the values of
k(1 6 k 6 3) objective functions generated by pruned solution i.
In this research, we have z11 6 z12 6 � � � 6 z1q. z1i is greater than
or equal to 0 while z2i and z3i are greater than 0. The procedures
of the final selection process to select the preferred one from the
q pruned solutions are described below.

(1) Set i = 1 and j = 2.
(2) Calculate the relative percentage difference dk of solutions i

and j according to the following rules:� �

If zki – 0, then dk ¼ 1� zki

zkj
� 100%.

If z1i = 0, d1 is a step function of the absolute value e of the
difference of z1i and z1j. That is, d1ðeÞ ¼

Ps
s¼1dsvIs ðeÞ, where
s P 1, ds 2 ð0; 100%� are real numbers, Is are intervals and
vIs is the indicator function of Is:

vIs ðxÞ ¼
1 if x 2 Is;

0 if x R Is

�

(3) Calculate the summation of three relative percentage
differences. If

P3
k¼1dk P pct, solution i keep

unchanged; else use solution j to replace solution i. pct
is a percentage pre-specified by the production planner.

(4) If j < q, set j = j + 1 and go to Step (3); else stop and
return solution i as the final preferred solution.
In practice, the values of s, Is, ds and pct are specified by produc-
tion planners based on actual production environments and
requirements. In this research, we set that s = 3, I1 is the interval
ð0; 2�, I2 is the interval ð2; 20�, I3 is the interval ð20; 366�,
d1 = 20%, d2 = 50%, d3 = 100%, and pct = 1%.
3.2. Production process simulator

The production process simulator is developed to simulate the
production capacity of each production department and determine
the beginning time of each production process by simulating the
production process of each production order in the assigned plants
in an aggregate manner. In this manner, each production depart-
ment in a plant processes the orders assigned in turn, i.e., produces
only a maximum of one process at a time.

The simulation flow of the production process simulator is
shown in Fig. 6. The input of the simulator is a candidate solution
(chromosome), which represents the assignment of the first type
of production process of each order group to different plants. The
output of the simulator is the values of objective functions (three
performance criteria). The simulation process of the simulator
consists of 5 procedures, each of which is described below in
detail.

3.2.1. Data initialization
The data initialization stage needs to load and initialize all data

and variables related to the simulation process, which involves the
following four parts:

(1) Load given production data, including due date and work-
load of each order, production departments included in each
plant, daily production capacity of each production depart-
ment, transportation time of semi-finished products
between the current production department and its next
one (or central warehouse).

(2) Initialize the variables related, including arrival time, begin-
ning time, processing time, completion time and transporta-
tion time of each production process of each order. Set their
values to 0.

(3) Assign a sequence number to each order group (order group
number) by sorting all order groups in terms of Rule Set One.

(4) Assign a sequence number to each order (order number) by
sorting all orders in terms of Rule Set Two.

The examples of order group numbers and order numbers can
be found in Appendix Tables A.1–A.3.

Rule Set One:

Rule (1) The order group with an earlier due date needs to be
assigned a smaller sequence number.

Rule (2) If multiple order groups have the same due date, the
order group with the less workload needs to be
assigned a smaller sequence number.
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Fig. 6. Simulation flow of the production process simulator.
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Rule (3) All order group numbers must be consecutive, which
start from number 1.

Rule Set Two:

Rule (1) In an order group, the order with an earlier due date
needs to be assigned a smaller order number.

Rule (2) In an order group, if multiple orders have the same
due date, the order with larger number of production
processes needs to be assigned a smaller order
number.

Rule (3) In an order group, if multiple orders have the same
due date and the same number of processes, the order
with less workload needs to be assigned a smaller
order number.

Rule (4) The sequence numbers of all orders must be consecu-
tive, which start from number 1.

Rule (5) Suppose that the sequence number of order group A is
smaller than that of order group B. The order numbers
of orders in order group A must be smaller than those
in order group B.

3.2.2. Process assignment
Based on the simulator input, assign the production processes

of each order to appropriate plants in terms of the assignment
rules below:

Rule Set Three:

Rule (1) For all orders in each order group, the production pro-
cesses with the same process number are assigned to
the same plant for processing.

Rule (2) For an order, if the plant, which is assigned to process-
ing its first production process, has the production
department processing the current production pro-
cess, the process must be assigned to the same plant
for processing. Otherwise, go to rule (3).

Rule (3) For an order, if the plant, which is assigned to process-
ing the last process of the current production process,
has the production department processing the current
production process, the process must be assigned to
the same plant for processing. Otherwise, go to rule
(4).

Rule (4) Randomly assign the current production process to
another plant capable of processing it.
3.2.3. Order split
If the workload of a production order is too large, it is necessary

to split this order to multiple sub-orders so as to eliminate or re-
duce the waiting time in the downstream production departments.

For an order, if the workload of its sewing production process is
greater than a specified order split percentage a (30% < a < 60%) of
the daily production capacity of the assigned plant, this order
needs to be divided into two or more sub-orders so that the
semi-finished products of this order can be transported timely to
the next production departments. The value of a can be deter-
mined according to the actual production progress. If an order is
divided into q (q > 1) sub-orders, the workloads of the first q � 1
sub-orders are all equal to the daily production capacity of the as-
signed plant multiplying the percentage a. The workload of the qth
sub-order is equal to the remaining workload of the order.

3.2.4. Calculation of the time related to each production process
For each production process of an order (sub-order), the time

for processing, transportation, waiting, arrival, beginning and com-
pletion of each production process are calculated according to the
methods described below:

Processing and transportation time: For each production process,
calculate its processing time and transportation time to its next
production department (or central warehouse) based on the pro-
cess assignment solution.

Arrival time: The arrival time Aij of production process Pij is cal-
culated by Eq. (6).

Beginning and waiting time: At time t, production department Skj

completes the production of current order and needs to select a
new order for processing. The new order and its beginning time
are determined in terms of the rules as follows.

Rule Set Four:

Rule (1) If no order reaches the production department Skj at
time t, the production department will wait for the
arrival of the next order which will be selected for
subsequent processing. Otherwise, go to rule 2. The
beginning time of the next order in this department
is equal to its arrival time. The time to await the arri-
val of the next process in this department is equal to
the beginning time – t.

Rule (2) If only one order reaches the production department
Skj at time t, this order will be selected for subsequent
processing. The beginning time of the next order in
this department is equal to time t. Otherwise, go to
rule 3. The waiting time is 0 in this department.

Rule (3) If more than one order reaches the production depart-
ment Skj at time t, this order with the smallest order
number and smallest order group number will be
selected for subsequent processing. The beginning
time of the next order in this department is equal to
time t. The waiting time is 0 in this department.

Completion time: The completion time Cij of production process
Pij is calculated by Eq. (7).

3.2.5. Calculation of objective functions
Based on the beginning and the completion time obtained in

3.2.4, the total tardiness and the total throughput time of all orders
are calculated by formulas (10) and (11). Based on the waiting time
obtained in 3.2.4, the total idle time of all production departments
is calculated by Eq. (12).

In the production process simulator described above, the begin-
ning time of all production processes of each order is determined
by the beginning time of its first production process and a series



Z.X. Guo et al. / Computers & Industrial Engineering 64 (2013) 972–986 979
of heuristic rules. These rules not only greatly simplify the optimi-
zation-seeking process by effectively reducing the search space,
but also effectively simplify the simulation process of all produc-
tion processes in multiple plants.
4. Experimental results and discussions

To investigate the effectiveness of the proposed optimization
model, a series of experiments were conducted based on the
real-world production data. Public datasets appropriate for the
experiments are not available in this research because the MSOS
problem has not been investigated in the literature. This research
thus collected the experimental data from an apparel manufactur-
ing company producing outerwear and sportswear in Mainland
China. This section highlights three typical experiments to validate
the effectiveness of the proposed model. The three experiments
present three MSOS tasks with different production workloads
and production periods. Similar MSOS tasks widely exist in the la-
bor-intensive manufacturing companies. The three MSOS tasks are
described as follows.

(1) Experiment 1: 10 order groups with 50 production orders
scheduled.

(2) Experiment 2: 12 order groups with 75 production orders
scheduled.

(3) Experiment 3: 15 order groups with 145 production orders
scheduled.

Tables A.1–A.3 show workloads of all production processes of
each order in these experiments. The values in columns 3–7 of each
row show the workloads of five production processes of one order.
The workload of a production process is set to 0 if it is not included
in an order. The due dates of order groups in each experiment are
shown in Table 1; only workdays are counted. For example, the due
date of order group 1 in experiment 1 is the 7th workday. The pro-
duction period of experiment 1 is nearly 2 months because one
month includes about 20 workdays, whereas the production period
of experiment 2 is about 3 months.

The investigated company comprises four plants located in dif-
ferent locations. Five different production departments are in-
volved, which are cutting, embroidering, printing, sewing and
finishing respectively. Table 2 shows the standard manpower of
production departments in each plant. The standard manpower
of a production department is 0 if the department does not exist
in the plant. The transportation time between different locations,
including four plants and a central warehouse, is shown in Table 3.
Table 1
Due dates (days) of order groups in three experiments.

OG1 OG2 OG3 OG4 OG5 OG6 OG7

Experiment 1 7 9 10 15 21 27 28
Experiment 2 7 8 8 12 16 16 20
Experiment 3 5 9 11 18 21 24 25

Table 2
Standard manpower of production departments.

Production Department 1 Production Department 2 Product

Factory 1 10 66 20
Factory 2 53 0 30
Factory 3 39 0 24
Factory 4 14 0 0
In the three experiments, the production departments dis-
cussed are empty initially; in other words, there is no work-in-pro-
gress in each department. Each production department is available
for production starting from time zero (day 0). The ranking prefer-
ence of objective functions applied to experiments 1–3 is the case
in which objective 1 (total tardiness) is more important than objec-
tive 2 (total throughput time) and objective 2 is more important
than objective 3 (total idle time). This ranking preference is consis-
tent with the policies and priorities of the investigated company.

Due to the uniqueness and complexity of the MSOS problem
investigated, the optimization algorithms in the existing literature
cannot be used directly to handle this problem. This research thus
compares the performance of production planning results gener-
ated by the proposed model with those from industrial practice.
The solutions from industrial practice are called industrial solu-
tions in this paper, which are the actual order scheduling solutions
in the investigated manufacturing company and generated based
on the following decision-making rules:

(1) The schedule only focuses on the objective of minimizing the
total tardiness of all orders.

(2) The order group with a larger product quantity needs to be
assigned to the plants with more available production
capacity;

(3) The order group with an earlier due date needs to be pro-
cessed firstly.

Due to the complexity of the investigated MSOS problem and
the large number of production orders, it is very difficult for the
production planner to generate an optimal solution in terms of
the above rules.
4.1. Experiment 1

The Pareto optimal solutions generated by the proposed model
are shown in two two-dimensional spaces in Fig. 7. There are 62
solutions in total, which is a very large set of solutions and it is thus
difficult for the production planner to select an appropriate solu-
tion for real production schedule.

Based on the 62 Pareto optimal solutions, the heuristic pruning
and final selection decision-making process was utilized to obtain
the pruned solutions and the final preferred order scheduling solu-
tion. Table 4 shows the seven pruned solutions generated by the
pruning process. In Figs. 7–9, the pruned solutions are also marked
by ‘ ’ points while the Pareto optimal solutions are marked by ‘ ’
points.
OG8 OG9 OG10 OG11 OG12 OG13 OG14 OG15

34 35 38 / / / / /
21 28 31 49 53 / / /
26 27 28 28 29 31 33 36

ion Department 3 Production Department 4 Production Department 5

190 26
1265 146
1018 99

320 37



Table 3
Transportation time (days) between different locations.

Factory
1

Factory
2

Factory
3

Factory
4

Central
warehouse

Factory 1 0 1 1 1 0.5
Factory 2 1 0 0.5 0.5 1
Factory 3 1 0.5 0 0.5 1
Factory 4 1 0.5 0.5 0 1
Central

warehouse
0.5 1 1 1 0
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If we compare the pruned solutions with the solution from
industrial practice shown in the first line of Table 5, it is clear that
the solution better than the industrial one can be found from the
pruned solutions whatever objective preference is used. For exam-
ple, if objective 1 has a higher priority than the other two objec-
tives (i.e., objectives 2–3 are considered when the values of
objective 1 are the same), solutions 1, 2, 14 and 15 are superior
to the industrial solution. If objective 3 has higher priority than
the other two, solutions 36 and 42 are superior to the industrial
solution. In this experiment, the final preferred solution, generated
by the final selection process, is solution 2 shown in Table 4.

4.2. Experiment 2

Fig. 8 shows the Pareto optimal solutions generated by the pro-
posed model in two-dimensional spaces. There are a total of 82
Pareto solutions. By using the pruning process, 13 pruned solutions
are obtained, which are shown in Table 6 and marked by ‘o’ points
in Fig. 8.
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Table 4
Pruned solutions for experiment 1.

Solution no. Assignment of production process 1 of each order group (OG)

OG1 OG2 OG3 OG4 OG5 OG6 OG7

1 3 3 2 4 3 2 1
2 3 3 2 1 3 2 4

14 3 3 2 4 3 2 1
15 3 3 2 1 3 2 4
25 3 4 2 1 3 2 3
36 1 4 2 4 3 2 3
42 1 4 2 4 3 2 3
In comparing the pruned solutions with the industrial solution
shown in the second line of Table 5, it is clear that, in the pruned
solutions, Pareto solutions are superior to the industrial solution
whatever objective preference is used. For example, if objective 2
has a higher priority than the other two objectives, all pruned solu-
tions generate better performance than the industrial solution. The
final preferred solution, generated by the final selection process, is
the solution 1 shown in Table 6.
4.3. Experiment 3

Fig. 9 shows the 278 Pareto optimal solutions generated by the
proposed model, which include 19 pruned solutions shown in Ta-
ble 7. The number of pruned solutions is much smaller than the
number of original Pareto solutions so that the production planner
can select an appropriate solution more conveniently for real pro-
duction schedule.

If we compare the pruned solutions with the industrial solution
shown in the last line of Table 5, we can come to the same conclu-
sion as drawn in experiments 1–2. The pruned solutions can gen-
erate better performance than the industrial solution whatever
objective preference is used. Using the final selection process, the
final MSOS solution of this experiment was obtained, which is
solution 1 shown in Table 7.
4.4. Performance analysis on the proposed model

Considering the values of objective functions shown in Tables 4,
6 and 7, it is clear that the decrease of one objective function value
can lead to the increase of another objective function value. For in-
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Values of objective functions

OG8 OG9 OG10 Objective 1 Objective 2 Objective 3

2 3 2 0 735 23.4
2 3 2 0 737.4 23
3 2 2 2.3 709.9 23.8
3 2 2 2.3 712.3 23.5
3 2 2 6.0 711.3 22.9
2 3 2 13.5 761.7 20.5
3 2 2 15.8 744.3 20.7
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Table 5
Solutions from industrial practice.

Experiment no. Assignment of production process 1 of each order group (OG) Objective 1 Objective 2 Objective 3

1 (3, 3, 2, 3, 4, 2, 3, 1, 2, 2) 2.6 903.6 21.4
2 (2, 1, 4, 3, 3, 2, 1, 3, 2, 3, 4, 2) 3.8 1668.2 42.4
3 (3, 1, 2, 4, 1, 3, 2, 2, 3, 1, 4, 2, 2, 4, 3) 7.6 1559.1 26.3
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stance, in Table 4, compared with solution 2, solution 14 generated
less total tardiness Z1 but more total throughput time Z2. These re-
sults provide clear evidences that the investigated three produc-
tion objectives can be conflicting.

It can be easily found from the results from the above experi-
ments that the performance of the MSOS in production planning
is perhaps significantly different if different process assignment
solutions are adopted. Thus, it is important to obtain the appropri-
ate solutions according to a specified production objective prefer-
ence. The proposed methodology can effectively handle the
MSOS problem by generating Pareto optimal solutions obviously
superior to the results from industrial practice whatever objective
function preference is used. Results also show that the proposed
chromosome representation and modified genetic operators are
effective in seeking optimal solutions. In addition, it was also found
that industrial solutions get worse when the problem size and
problem complexity increase. This is because the increasing prob-
lem complexity increases the difficulty of obtaining good produc-
tion planning solutions.

This research defines front counter, denoted by FCs, to indicate
the number of Pareto optimal front in which the sth candidate
solution (sth chromosome in GA evolution process) lies. For exam-
ple, FC2 = 1 indicates the 2nd chromosome lies in the 1st Pareto
optimal front. Fig. 10 shows, respectively, the evolutionary trajec-



Table 6
Pruned solutions for experiment 2.

Solution no. Assignment of production process 1 of each order group (OG) Values of objective functions

OG1 OG2 OG3 OG4 OG5 OG6 OG7 OG8 OG9 OG10 OG11 OG12 Objective 1 Objective 2 Objective 3

1 2 4 1 4 3 2 1 3 2 3 3 2 0 1446.7 46
5 2 3 4 1 3 2 1 4 2 3 2 3 11 1460 36.8
7 3 4 1 1 3 2 3 2 2 3 3 2 13.2 1357.6 45

17 3 1 4 4 3 2 1 2 2 3 2 3 23.9 1375.1 34.5
21 3 3 1 3 3 2 1 2 2 4 2 3 27.5 1490 31.9
26 3 4 1 3 3 2 1 2 2 3 2 3 40.5 1317.7 35.3
30 3 4 4 4 3 2 1 2 2 3 2 3 42.4 1350.8 33.7
33 3 4 1 1 3 2 3 2 2 3 2 3 50.5 1292.1 35.6
37 3 4 1 1 3 2 3 2 3 2 3 2 63.4 1277 37.1
51 4 4 1 1 2 2 3 3 2 3 2 3 121.3 1316.5 32.5
54 4 4 1 1 2 2 4 3 2 3 2 3 139.8 1358.1 31.1
65 4 4 1 1 2 2 4 2 2 3 2 3 198 1350 30.2
73 4 4 1 4 2 2 1 2 2 3 2 3 233.6 1363.5 29.6

Table 7
Pruned solutions for experiment 3.

Solution
no.

Assignment of production process 1 of each order group (OG) Objective
1

Objective
2

Objective
3

OG1 OG2 OG3 OG4 OG5 OG6 OG7 OG8 OG9 OG10 OG11 OG12 OG13 OG14 OG15

1 2 1 2 4 1 2 1 3 2 3 1 4 2 3 2 0 1525.9 27.9
3 2 3 2 4 1 3 2 2 3 1 1 4 2 3 2 0.9 1403.1 30.1
7 3 1 2 4 1 3 2 2 3 1 4 4 2 3 2 1.2 1467.2 26.7
9 3 1 2 4 1 3 2 2 3 4 1 2 2 3 2 4.6 1407.4 26.7

39 3 4 2 2 4 3 1 2 3 1 1 4 2 3 2 15.1 1318.2 27.5
43 3 1 2 2 4 3 2 2 3 1 1 4 2 3 2 15.5 1322.1 26.3

106 2 3 3 2 2 3 1 2 4 1 1 4 2 3 2 35.8 1275.7 31.4
108 4 1 2 2 3 3 2 2 3 1 1 4 2 3 2 36.8 1327.4 23.6
112 4 1 2 2 4 3 2 2 3 1 1 3 2 3 2 38.2 1342.7 22.8
115 2 3 3 2 4 3 1 2 2 1 1 4 2 3 2 40 1270.1 30.4
121 3 4 3 2 2 3 1 2 4 1 1 2 2 3 2 45.8 1259 31.5
128 2 4 3 2 4 3 1 2 2 1 1 3 2 3 2 48.2 1272.3 27.6
138 3 4 3 2 4 3 1 2 2 1 1 2 2 3 2 56.6 1250.5 30.5
148 4 1 3 3 4 3 1 2 2 1 1 2 2 4 2 66.1 1435.1 19.7
164 3 3 3 2 4 2 1 3 2 1 1 4 2 2 2 81.9 1226.8 30.2
193 2 2 3 3 3 2 1 2 3 1 1 4 3 3 2 95.2 1234.8 26.4
200 4 1 3 3 4 2 3 3 2 1 1 2 2 2 2 107.1 1279.1 23
208 3 4 3 3 4 2 1 3 2 1 1 2 2 2 2 115.7 1219.2 26
209 4 4 3 3 2 3 1 2 2 1 1 2 2 3 2 117.6 1253.1 24
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tories of the minimal values of three objectives and the summationP
sFCs of front counters in all candidate solutions of each popula-

tion over generations in the optimization processes of experiments
1–3. In its subfigures (a)–(d), solid line indicates the results of
experiment 1 while dashed line and dash-dotted line indicate the
results of experiments 2 and 3 respectively. In each subfigure,
the nested graph shows the snapshot of the evolutionary trajecto-
ries of the first 50 generations.

It can be clearly found from Fig. 10 that, in each experiment, the
3 objectives got converged after some iterations. Taking subfigure
(a) as an example, the minimal value of objective 1 converged to
the global minimum after 6, 73 and 523 generations in experi-
ments 1–3 respectively because the value of objective 1 cannot
be less than 0. It indicates that the proposed Pareto optimization
model has the capacity to find the globally optimal solutions.
Experiment 3 took a much more iterations to converge because it
handled a MSOS problem with a much larger combinatorial com-
plexity. Subfigure (d) shows that the summations of front counters
in each population converged to 500 in experiments 1–2 while it
converged to 1000 in experiment 3. It indicates that all individuals
(candidate solutions) in the final population lie in the 1st Pareto
optimal front because the population sizes in experiments 1–3
are 500, 500 and 1000 respectively. These results show that the
proposed model can get converged well and obtain optimal solu-
tions effectively.
The experiments were carried out on a PC with Intel� Core™ i5
Processor 2.5G CPU and 2 GB RAM and using MATLAB version 7.8
(R2009a). The results generated by the proposed model were ob-
tained based on the settings: the population sizes of genetic pro-
cesses were 500, 500 and 1000 respectively while the maximum
numbers of generations were 1000 in experiments 1–3. The cross-
over probability and the mutation probability are 0.6 and 0.01
respectively. The order split percentage a was 50%. The processing
times of each generation in experiments 1–3 are 9.8 s, 12.1 s and
28.6 s, respectively.
5. Conclusion

This paper investigates a multi-objective multi-site order
scheduling problem in the production planning stage with the con-
sideration of multiple plants, multiple production departments and
multiple production processes. The mathematical model for the
investigated problem has been established, which considers three
production objectives, including minimizing the total tardiness
and throughput time of all orders as well as the total idle time in
all production departments. These objectives are particularly use-
ful for manufacturing companies to meet due dates and improve
management performance.



Fig. 10. Change trends of three objectives and front counter in experiments 1–3 (-, experiment 1; –, experiment 2; –., experiment 3).

Table A.1
Workload (standard man days) of each production process of each order (Experiment
1).

OG
no.

Order
no.

Process
1

Process
2

Process
3

Process
4

Process
5

1 1 14.2 7 9.1 282.4 37
1 2 19.7 10.8 13.4 400.7 46.5
1 3 19.2 9.4 0 400 40
1 4 23.1 12.5 0 489.9 48.6
2 5 8.1 3.6 4.9 161.1 16.2
2 6 6.8 3.8 4.5 164.3 16.5
2 7 7.4 3.9 5.7 176.8 21.9
2 8 8.7 5 5.2 187.5 18.6
2 9 10.9 5 6.8 223.3 27.2
2 10 11.1 6.2 7.6 274.3 32.3
2 11 14.6 7.8 10.3 319 32.7
2 12 15.1 10.1 12.2 366.1 38.8
3 13 57.7 27.7 37.8 1234.5 125.4
3 14 45.1 24.6 33.3 990.8 106.9
3 15 23.6 12.5 0 517.9 53.9
3 16 41.2 0 0 869 108.5
3 17 25 0 0 626.1 77.6
4 18 6.6 3.9 4.7 153.3 17.8
4 19 6.6 4.4 5.2 167.4 21.6

(continued on next page)
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A Pareto optimization model has been developed to generate
the Pareto optimal solutions for the problem investigated, in which
a NSGA-II-based optimization process was proposed to seek candi-
date solutions and an effective production process simulator was
developed to evaluate the performance of the candidate solutions.
In the NSGA-II-based optimization process, a novel chromosome
representation and modified genetic operators were presented to
handle the investigated problem while a heuristic pruning and fi-
nal selection decision-making process was developed to select
out the final preferred solution from the set of Pareto optimal solu-
tions. In the simulator, a series of heuristic rules were introduced
to effectively simplify the processes of optimization seeking and
production simulation of all production processes.

The effectiveness of the proposed optimization model has been
validated by using the industrial data from a labor-intensive man-
ufacturing company. The experimental results demonstrate that
the proposed model could handle the investigated problem effec-
tively by providing Pareto optimal solutions much superior to
the industrial solutions.

The proposed optimization model can be easily extended to
handle production outsourcing in labor-intensive industries by
considering an outsourcing factory as a production plant. This re-
search is also helpful for manufacturers to make due date negotia-
tions with their customers. Further research will consider the
effects of various production uncertainties on production planning,
such as uncertain production orders and possible material short-
age, and investigate the performances of other pruning methods
such as data clustering in final preferred solution and compare
its results with those generated by the ranking preference method
used in this research. In addition, it is also a desirable direction to
develop other intelligent multi-objective optimization models,
based on other meta-heuristics such as simulated annealing, evo-
lution strategy, and ant colony algorithm, for the investigated
problem and compared the performances of these models with
the Pareto optimization model proposed in this research.
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Table A.1 (continued)

OG
no.

Order
no.

Process
1

Process
2

Process
3

Process
4

Process
5

4 20 7.5 0 5.1 167.4 16.8
4 21 5 0 0 113.6 13.4
4 22 5.8 0 0 121.1 14.2
5 23 53.3 0 37.8 1088.2 138.2
5 24 104.7 0 71.9 2120 241.7
5 25 71 0 48.3 1450 171.8
6 26 47.3 26.8 25.8 952.4 117.5
6 27 53.7 37.6 48 1333.3 141
6 28 99.2 64 70.2 2232.3 284
6 29 38.7 23.8 25.5 882.4 96.4
6 30 36.4 20.2 24.8 887.8 99.9
6 31 147.5 82.7 104 3767.4 429.7
6 32 210.6 123 0 5109.4 641
6 33 175.9 103.8 0 4000 480.1
7 34 12.2 5.8 8.4 250 27.5
7 35 21 0 13.8 468.8 54
7 36 22 0 0 495 52.9
7 37 12.4 0 0 282.4 30.2
8 38 81.4 51 60.3 1981.4 248.2
8 39 76.5 0 50.5 1575 176.5
8 40 17.9 0 11.7 370.4 46.7
9 41 51.1 25.2 35.2 1055.3 131.1
9 42 51.5 26.7 39 1153.3 149.1
9 43 61.9 0 40.3 1286.7 137
9 44 81.9 0 51 1694.3 193
9 45 84.1 0 63.4 1803.8 232.3
9 46 97.1 0 0 2096.4 250.3

10 47 64.6 0 51.8 1472.2 152.8
10 48 42.6 0 28.2 969.5 119.8
10 49 63.6 0 0 1608 194.5
10 50 114.8 0 0 2762.9 335

Table A.2
Workload (standard man days) of each production process of each order.

OG
no.

Order
no.

Process
1

Process
2

Process
3

Process
4

Process
5

1 1 6.9 3.1 4.9 140.6 16.6
1 2 7 3.9 5.1 144.8 15.7
1 3 11.7 0 8.7 257.8 32.8
1 4 13.3 0 9.9 282.4 36
1 5 15.8 0 13.5 400 41.1
1 6 18.6 0 11.2 400.7 47.9
1 7 20.1 0 0 456.8 53.8
1 8 22.5 0 0 489.9 60.5
2 9 5.3 2.5 3.9 113.6 11.8
2 10 6.7 4.1 5.3 153.3 18.2
2 11 6.8 0 4.9 163.1 17.5
2 12 7 0 4.6 167.4 17.4
2 13 7.5 0 5.2 167.4 18.3
2 14 5 0 3.7 121.1 14.2
2 15 6.7 0 5 159 18.1
3 16 6.6 0 0 161.1 20.3
3 17 6.7 0 0 164.3 18.3
3 18 8.8 0 0 176.8 22.2
3 19 8.9 0 0 187.5 19.8
3 20 10.9 0 0 223.3 28.3
4 21 11 6.7 8.4 286.8 36
4 22 12.5 7.7 9.8 292 34.6
4 23 15.6 0 0 319 32.3
4 24 15.5 0 0 366.1 37.6
5 25 27.4 0 21.5 661.4 74.8
5 26 76.5 0 47.3 1575 171.1
5 27 72.8 0 53.9 1828.8 183.3
5 28 81.8 0 65 1837.5 238.9
5 29 83.3 0 0 1981.4 251.7
6 30 51.5 24.6 30.4 1055.3 134.8
6 31 82.4 56.7 57.7 2096.4 237.3
6 32 39 26.7 27.6 969.5 107.5
6 33 43.8 32.3 39.6 1153.3 130.4
6 34 52.9 33.6 0 1286.7 168
6 35 59.6 29.6 0 1358.2 174.6
6 36 70.2 38.3 0 1472.2 185.3
7 37 22.4 0 14.8 468.8 46.8

Table A.2 (continued)

OG
no.

Order
no.

Process
1

Process
2

Process
3

Process
4

Process
5

7 38 22.8 0 14.6 495 49.8
7 39 11.5 5.9 0 250 27.2
7 40 13.1 7.9 0 282.4 34.1
7 41 17.9 11.6 0 424.3 47
7 42 24.2 13.3 0 535.7 63
8 43 27.9 18.9 20 725 90.6
8 44 48.9 32.7 40.5 1234.5 157.5
8 45 46.1 21.7 28.7 990.8 101
8 46 41.5 21.7 29.2 869 104.7
8 47 46.9 25.1 0 970.5 114.4
9 48 41.7 23.1 25.8 925 111.2
9 49 41.7 27.3 38 1088.2 125
9 50 66 39.4 56.7 1645.3 191.4
9 51 93.5 43.3 67.8 1950 228.5
9 52 80.8 57.2 65.5 1987.5 257.1
9 53 99.8 45.2 73 2062.5 229.6
9 54 86 55.8 67.5 2200 276.6

10 55 64 38.3 41.6 1494 161.7
10 56 76.3 43.3 53 1608 167.1
10 57 75 40 56.9 1694.3 221.6
10 58 84.7 0 0 1803.8 216.1
10 59 71.5 0 0 1866.3 197.2
11 60 86.4 52.2 0 2000 238.9
11 61 94.4 50.5 0 2155.7 249.6
11 62 104.7 52.5 0 2265.6 298.3
11 63 100 0 76.6 2416.7 252.5
11 64 128.8 0 97.2 2762.9 294.3
12 65 29.5 16.3 21.6 666.7 76.5
12 66 38.9 20.3 26.1 882.4 95.8
12 67 38.1 23.4 29.6 887.8 90.2
12 68 38.4 21.7 30 952.4 116.7
12 69 48 29.5 37.4 1155.3 137.4
12 70 62 35.3 36.3 1333.3 136.2
12 71 95.7 63.3 63.5 2232.3 275.5
12 72 110.1 68 82.8 2373.8 303.7
12 73 155.7 81.6 129.2 3767.4 434.9
12 74 225.1 118.8 158.1 5109.4 556.7
12 75 172 102.5 130.5 4000 424.2

Table A.3
Workload (standard man days) of each production process of each order.

OG
no.

Order
no.

Process
1

Process
2

Process
3

Process
4

Process
5

1 1 6.5 0 4.1 140 15.5
1 2 9.8 0 6.9 241.2 30.5
1 3 12.3 0 7 257 32.8
1 4 13 0 0 327.5 39.5
1 5 23.7 0 0 495 54.5
2 6 6.1 3.1 4.1 121.7 13.4
2 7 11.2 6 7.1 223.3 27.1
2 8 17.4 0 13.3 400.7 46.2
2 9 23.2 0 15.1 489.9 53.8
3 10 40.9 26 31.4 1022.5 115.3
3 11 34.8 17.8 25.5 727.1 93.7
3 12 31.8 19.7 24.7 760.9 96.5
3 13 42.8 0 25.4 908.9 111
3 14 45 0 30.2 908.9 104.7
4 15 3.1 2.2 2.2 79.5 10.4
4 16 11.3 6.5 8.1 256.5 29.1
4 17 1.3 0.7 1 29.5 2.9
4 18 5.7 3.6 4.3 132.9 14.6
4 19 6 3.3 4 130 14.9
4 20 10.1 6.1 6.1 225 26
4 21 23.9 0 19.5 615.8 66.8
4 22 33 0 24.6 869 91.5
4 23 9.7 0 7.9 253.1 32.7
4 24 8.7 0 5.6 195.2 25.7
4 25 15.2 0 11.5 332.6 43.7
4 26 8.4 4.6 0 167.8 16.9
4 27 6.2 4.2 0 152.2 18.4
4 28 22.1 13 0 556 60
4 29 9.5 4.4 0 193.5 19.5
4 30 5.1 3 0 117.5 12.6
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Table A.3 (continued)

OG
no.

Order
no.

Process
1

Process
2

Process
3

Process
4

Process
5

5 31 16.9 10.9 13 429.3 47.1
5 32 9.6 5.2 6.2 211.3 23
5 33 8.4 4.2 5.1 166.9 21.1
5 34 19.7 8.9 14.1 393.3 42.6
5 35 20.4 0 14.3 516.7 63.6
5 36 8.6 0 5.8 170.7 18.3
5 37 0.5 0 0.4 12 1.2
5 38 2.3 0 1.3 45.3 5.4
5 39 19.1 0 13.7 409.5 42.1
5 40 3.1 0 0 63.7 7.6
6 41 23.4 10.8 14 487.1 57.3
6 42 13.1 7.6 10.5 294.3 34.3
6 43 9.4 4.6 7 205.6 25.1
6 44 7.5 4.5 5.2 164.8 16.3
6 45 38 19.9 25 793.6 79.4
6 46 14.3 9.1 10.9 345.7 44.6
6 47 22.6 12.7 17.9 531.4 57.9
6 48 47 24.2 29.6 1055.3 112.3
6 49 50.4 27.4 36.3 1153.3 127.3
6 50 57.5 0 42.7 1286.7 165.9
6 51 37.4 0 29.1 829.3 88
6 52 80.1 0 55.4 1694.3 180.9
6 53 19 0 13.1 390 47.9
6 54 19.2 0 13 416.9 46.7
6 55 17.7 0 12.5 431.9 51.5
6 56 22.6 15.1 0 549.3 67.8
6 57 19.7 9.6 0 406 44
6 58 7.7 4.2 0 190 21.9
6 59 18.3 9.6 0 370.6 47.3
6 60 15.4 0 0 386.1 40.9
6 61 21.5 0 0 473 51
6 62 24 0 0 521.8 55.1
7 63 4.5 0 0 97.6 11.2
7 64 2.5 0 0 65.9 8.2
7 65 10.8 0 0 262.7 30.1
7 66 2.9 0 0 76 9.4
7 67 1.4 0 0 34.2 3.4
7 68 2.1 0 0 45.6 5.3
7 69 5.2 0 0 106.9 12.5
7 70 1.1 0 0 25.6 2.6
8 71 43.6 22.9 32.3 918.6 118.3
8 72 61.9 29.9 37 1267.5 154.6
8 73 76.7 37.4 46.1 1538.9 159.7
8 74 64.1 38 53.9 1543.8 156.8
8 75 70.5 41.3 53.4 1588.6 186.6
8 76 76.7 42 49.1 1791.8 229.1
8 77 78.6 58.8 63.3 2042.1 224.8
8 78 101 0 0 2228.4 266.1
8 79 130.2 0 0 3317.6 379.9
9 80 6.8 0 4.4 151.8 18.5
9 81 14 0 10.9 328.5 42.5
9 82 5.5 0 3.5 123.8 12.9
9 83 7.3 0 5.1 171 22.4
9 84 26.7 0 20.6 638 63.6
9 85 18.8 0 12.3 375 47.7
9 86 15.9 0 9.9 353.5 39.5
9 87 10.1 0 7.5 221.3 25.4
9 88 4.3 0 3.5 101 10.1
9 89 22 0 15.7 476.8 51.8
9 90 8 0 6 192.5 21.8
9 91 2.5 0 1.8 64 6.3
9 92 25.6 0 18.1 548.5 58

10 93 1.7 0.9 1 37.2 3.7
10 94 2.7 1.6 2.1 70.5 7.6
10 95 6.9 0 4.8 150 15.7
10 96 3.2 0 2 72.6 7.8
10 97 2.6 0 1.9 52.6 6.5
10 98 6.6 0 4 142.9 15.3
10 99 2.4 0 1.6 55.8 6.7
10 100 1.9 0 0 46.1 4.7
10 101 3.8 0 0 94.2 10.8
10 102 2.5 0 0 56.3 6.1
10 103 0.9 0 0 21.1 2.7
10 104 0.3 0 0 6.7 0.7
11 105 2.7 1.4 1.8 57.7 5.9

Table A.3 (continued)

OG
no.

Order
no.

Process
1

Process
2

Process
3

Process
4

Process
5

11 106 3.5 2 2 71.2 8.3
11 107 3.1 1.8 2 63.5 6.6
11 108 0.6 0.4 0.5 16.7 2.1
11 109 1.6 0 1.1 31.1 3.6
11 110 2.6 0 2 59.9 6.1
11 111 1.5 0 1.3 39 5.1
12 112 24.3 14.3 20.8 640.7 67.8
12 113 21.1 10.5 14.6 460 57.2
12 114 8.1 4.8 5.5 186.2 20.6
12 115 3.5 2.5 2.6 91 9.3
12 116 16.7 12.1 13.5 423.6 44.7
12 117 4.5 2.6 3.1 96.4 12.7
12 118 8.8 0 6.2 187.9 22.1
12 119 1.8 0 1.3 38.5 4.3
12 120 7.5 0 6.6 194.4 21.5
12 121 33.9 16.6 0 734.3 96
12 122 3.3 1.6 0 70 8.5
13 123 57.6 33.8 0 1336.5 168.9
13 124 13.6 8.9 0 322.4 33
13 125 16.1 0 10.1 332.4 36.2
13 126 23.2 0 15.6 575.4 57.1
13 127 7.4 0 6.9 193.7 22.4
13 128 49.6 0 42.6 1241.3 139.7
13 129 62.1 0 41.4 1241.3 162.2
14 130 29.8 18.9 0 745.9 97.7
14 131 97.1 50.3 0 2301.3 302.5
14 132 17.6 12.9 0 455 51
14 133 9.3 4.7 0 196.3 24.4
14 134 42.9 26.9 0 950.6 109.3
14 135 1.2 0.8 0 30 3.7
15 136 16.7 0 10.7 392.1 41.7
15 137 2.3 0 1.5 53.7 5.7
15 138 36.7 0 26.9 960.6 113.2
15 139 7.8 0 5.5 177.5 18.2
15 140 35.4 0 24 756.7 89.8
15 141 29.9 0 23.4 715.8 79.4
15 142 58.9 0 0 1434.2 171.4
15 143 62.4 0 0 1238.8 134.7
15 144 35.4 0 0 880.5 102.9
15 145 8.1 0 0 186.3 22.8
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